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Abstract

The energy associated with an electromagnetic signal travels in general with the group
velocity. We consider the group velocity of a composite and ask the question whether the group
velocity in the composite can be higher than in either of the constituent phases. Here we show
that it can, and by a large factor.

The key point is that the group velocity depends on both the refractive index and the
dispersion. By combining one phase with high refractive index and low dispersion with another
phase with low refractive index and high dispersion, the composite can be made to exhibit
comparatively low refractive index and low dispersion and hence a large group velocity. In
particular this can be realized when the dispersion relations of both phases are described by a
Lorentzian model and one phase is close to resonance.

The ‘speed-up’ is largest in a laminate microgeometry, but can be made large also in isotropic
microstructures, described by a Maxwell-Garnett model. These geometries attain the bounds
on the speed-up that we derive. The group velocity can also be smaller in the composite than
in the phases and we derive bounds for the possible ‘slow-down’. These bounds are attained by

similar geometries as those that realize the optimal bounds for the speed-up.
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1 Introduction

For electromagnetic wave propagation a lot is known about the effective properties of materials in
the time harmonic case [4, 7]. Expressions for the effective dielectric tensor &,(w) often give an
accurate description of a materials response to a field that varies at a constant frequency, w. Not so
much is known about propagation of pulses. Our objective is to characterize and compute bounds
for the velocity of wave-pulses that propagates in composites.

We consider a dielectric composite of two isotropic phases that is subject to some time dependent
field E(t). We work in the quasistatic regime, that is we assume that the time variation of the
electric field is sufficiently slow such that the curl of the electric field varies on a length scale large
relative to the microstructure of the material. An important aspect of the propagating pulse is its
group velocity, in general this corresponds to the velocity with which energy travels. An interesting
question is: can one derive a bound for the group velocity of the composite when this is measured
relative to the group velocities of the two phases? In this paper we present such bounds.

Let k be the wave number and w the (temporal) frequency. For light waves in a medium with

magnetic permeability ;4 = 1 the relation between w and k is given by

ck

w(k) = VD) (1)

with ¢ being the velocity of light in vacuum and €* the (effective) dielectric constant of the medium.
If the initial wave packet is (narrowly) centered at k = ko, corresponding to w = wy, it propagates

with the group velocity

vg(ko) = [dk/dw(wo)]™! = dw/dk(ko), (2)

see [5]. Note that if €*(k) = €*, then v, = v, = w(ko)/ko = ¢/v/¢* with v, the phase velocity. In

general vy # v, and the wave propagation is dispersive.

2 Bounds for the group velocity

The composite is constructed from two isotropic dielectric phases. The parameters



€i(wp) and de;/dw(wo) (3)

characterize material 7 = 1 or 2 with wy being the frequency at which we evaluate the group velocity.
The phases are labeled so that €;(wp) > e2(wp) and we let p denote the volume fraction of material

one. We assume
e The quasistatic regime.
e That the magnetic permeability is constant: y = 1.
e That the dielectric constant is real.

Thus, we do not consider dissipation and the relationship between w and k is given by (1).

Next, we present bounds for the ‘speed-up’ and ‘slow-down’ of the composite relative to the
constituents. Here we present bounds in the general anisotropic case, see [10] for bounds if the
composite is constrained to be isotropic or if the volume fraction is fixed.

The bounds for the group velocity are obtained through joint bounds for the effective values of
the parameters (3) in the composite [10], which derive from joint bounds on €* and de* /de; derived

in[l,2 38,09, 11].

2.1 Maximal increase in group velocity

Let {v1,v9,v*} be respectively the group velocities of the phases and the composite and define

G = min[v*/vy,v"/ve). (4)

We want to maximize this quantity with respect to the geometry of the composite and the volume
fraction. For electromagnetic wave propagation in the quasistatic regime we find that the sharp

bound for G is
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with

h = 62(&)0)/61 (a)()) S 1 (6)
3 wdey /dw/(2€1) + 1
wdey/dw/(2€2) + 1

The analysis we present in [10] gives bounds also for v*/v; and v*/vs. The bound (5) is real-
ized by waves propagating in a laminated material, with the layers orthogonal to the direction of

propagation and with volume fraction of phase one

_ h(1—2B8+h)
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Moreover, we find that

1++vh 1
2h1/4 ~ 2h1/4

m[?xg(h,ﬁ) = G(h,Vh) = as hl0. (8)

At this maximal speed-up p = Vh/(1 + vh), v1 = vo and the effective dielectric constant of the

laminate is €* = Vhe;.

Thus, by choosing i small enough we can construct a composite where pulses travel arbitrarily
much faster than they do in either of the two phases, but still slower than the speed of light
in a vacuum. The volume fraction of the geometry realizing the bound is o« vh. Hence, large
relative speed-ups are obtained by doping phase two with phase one with the ratio of the dielectric
constants, h, being small.

In Figure 1 we plot G(h,3) for a range of parameter values. The dashed line is the bound
if we constrain the composite to be isotropic. The bounds in the isotropic cases are realized by
geometries for the composites that attain the Hashin-Shtrikman bounds [6]. Note that the bound
on the speed-up almost coincides in the isotropic (dashed lines) and anisotropic cases (solid lines)

especially for small h.
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Figure 1: This figure shows the optimal speed-up as a function of § for a range of values of the
ratio of the dielectric constants h. The solid lines correspond to the anisotropic case and the
dashed line to the isotropic bound. Note that these almost coincide. In the top plot we use
h € {107%, 1077, 1075, 1073, 10!} and obtain the largest speed-ups for small A. In the bottom

plot we use h € {.01, .02, .05, .1}.

2.2 Maximal decrease in group velocity

Let as above {v1, v2,v*} be respectively the group velocities of the phases and the composite and

define

J = minfvy /v, ve/vs].

The lower bound for the group velocity is obtained by maximizing this quantity with respect to the

geometry of the composite and the volume fraction. We find that the bound for the ‘slow-down’ is
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with A and 8 defined in (6). The bound is again realized by propagation in a laminated medium,
but now with lamination parallel to the direction of propagation and with the radiation polarized
so the electric field is perpendicular to the layer interfaces. The bound when maximized also with

respect to the value of 8 becomes

2(1 4+ Vh + h)3/2 2
Vh(1+ VR332 V332

mng(h,ﬂ) = J(h,Vh) = as hlO0. (10)

At the maximal slow-down p = 1 — 2h and then v; = v3. Note that a large slow-down can be
obtained for A small, then the volume fraction for the ‘optimal’ composite is close to unity. Thus
contrary to the maximal speed-up case, a large slow down is obtained when material one is doped
with material two, rather than visa versa.

In Figure 2 we plot J(h,(3) for a range of parameter values. Large slow downs are obtained
when h is small and 3 is close to zero. This corresponds to the dielectric constant of material
two being much smaller than that of material one and, moreover, that the relative dispersion in

material two is much larger than the relative dispersion in material one.
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Figure 2: The Figure shows the optimal slow-down as a function of 3 for a range of values of h. The
set of solid lines correspond to h € {1079, 10=7, 107°, 103, 10~!} with the largest slow-downs
being obtained for small h values.

3 Illustration using Lorentzian phases

Consider the following Lorentzian [5] models for the dielectric constants

A_l
1—w?

81((4)) = 1+ (11)



1+ \/K
1/4+\/Z—w2.

ea(w) = (12)
with A = 10~3. Note that for VA < w < 1/4 + 2v/A the dielectric constant of phase two, e,
is negative and the group velocity, as defined by (2), is not a useful concept (the wave amplitude
decays exponentially). We denote the center frequency of the propagating pulse as wy and choose
the volume fraction of material one to be p = VVh = \/e3(wp) /€1 (wp). The composite is laminated in
the direction orthogonal to propagation such that the effective dielectric constant of the composite
ise* =per+ (1 —p) ee. In Figure 3 we show in the top plot the group velocities as function
of wy. The group velocity is normalized by the speed of light ¢. The displayed frequency range
is close to the resonance frequency of material two. The ‘non-propagating’ regime corresponds to
the frequencies where the group velocity of material two, shown with dashed line, is zero. We let
A = 1073, and thus, are doping material two with a very slow material. The bottom plot shows
the actual speed-up as function of wy. The dashed line is the bound for the speed-up in the small
h limit, that is 1/(2h'/*). Recall that h is the ratio of the dielectric constant of the phases. For the
models we use: h = A. The figure shows that when the group velocities of the phases coincide then
the realized speed-up approximately equals the bound. If the group velocity depends sensitively on
wp the material is dispersive. From the figure we see that a large speed-up is obtained by combining
one phase with large dielectric constant and low dispersion with another phase that has a relatively
low dielectric constant and relatively high dispersion. The composite can then be made to exhibit

comparatively low dielectric constant and low dispersion and hence a large group velocity.

Next, we illustrate that we can obtain large slow-downs of the composite using the same phases.
Now we choose p = 1 — 2h = 1 — 2(ea(wp)/e1(wp)), thus are doping material one with material
two, rather than visa versa. Moreover, we choose the composite to be laminated in the direction
orthogonal to the electric field so that the effective dielectric constant of the composite is 1/e* =
p/e1 + (1 — p)/e2. The top plot in Figure 4 shows the group velocity for the pure phases and the
composite. We show the group-velocity as a function of the center frequency for the pulse, wy.
The displayed frequency range is close to the resonance frequency of material two. The bottom
plot shows the actual slow-down for the composite relative to both of the phases. Note that by
combining the same phases as above we are able to construct a composite with comparatively small
group velocity. Moreover that the realized slow-down is approximately equal to the bound when the

group velocities of the phases coincide. For wy = 0.5605 the realized slow down is approximately
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Figure 3: The top plot shows the group velocities as function of center frequency for a composite of
two Lorentzian materials. The dotted, dashed and solid lines correspond respectively to material
one, two and the composite. In the bottom plot we show the speed-up of the composite relative to
the phases. The dashed line is the upper-bound on the speed-up for the given ratio of the dielectric
constants. Note that the bound is attained when the group velocities of the phases coincide.
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respectively to material one, two and the composite. In the bottom plot we show the slow-down
of the composite relative to the phases. The dashed line is the upper-bound on the slow-down for
the given ratio of the dielectric constants.
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